Search results for "mass measurement"

showing 10 items of 29 documents

Top-quark mass measurements at the LHC: alternative methods

2016

Alternative top quark mass determinations can provide inputs to the world average with orthogonal systematic uncertainties and may help to refine the interpretation of the standard method. Among a number of recent results I focus on the extractions by ATLAS and CMS of the top quark pole mass from the top quark pair and tt + 1 jet production cross-section, which have now reached a precision of 1%. Alternative top quark mass determinations can provide inputs to the world average with orthogonal systematic uncertainties and may help to refine the interpretation of the standard method. Among a number of recent results I focus on the extractions by ATLAS and CMS of the top quark pole mass from t…

Alternative methodsPhysicsTop quarkParticle physicsLarge Hadron Colliderhep-exHigh Energy Physics::PhenomenologyFOS: Physical scienceshep-phJet (particle physics)Mass measurementHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)medicine.anatomical_structureAtlas (anatomy)Physics::Atomic and Molecular ClustersmedicineHigh Energy Physics::ExperimentParticle Physics - ExperimentParticle Physics - Phenomenology
researchProduct

NEW FRAMES OF ARCHAEOMETRICAL DESCRIPTION OF SPINDLE WHORLS: A CASE STUDY OF THE LATE ENEOLITHIC SPINDLE WHORLS FROM THE 1C SITE IN GRÓDEK, DISTRICT …

2010

The essential role of yarn spinning in textile production is indisputable. In this context, spindle whorls, the basic spinning accessories that can be found in the archaeological record, are commonly discussed. Even though the importance of the technical specification of spindle whorls has been already recognized by some authors, their functional characteristics are usually limited to the basic parameters affecting their usage range (i.e., weight, diameter and height). And since the mass moment of inertia of spindle whorls is considered to be a salient index when discussing their technical variability, the descriptions are deficient. With this short study, we intend to implement further res…

ArcheologyHistoryPaleontologyTextile productionSmall sampleContext (language use)ChalcolithicMass measurementMathematicsArchaeometry
researchProduct

Cadmium mass measurements between the neutron shell closures at N=50 and 82

2010

International audience; The mass values of the neutron-deficient cadmium isotopes 99−109Cd and of the neutronrich isotopes 114,120,122−124,126,128Cd have been measured using ISOLTRAP. The behavior of the separation energies of the cadmium isotopes from N = 50 to 82 is discussed.

CadmiumIsotopehigh-precision mass measurementsChemistryStable isotope ratioPenning trapRadiochemistrychemistry.chemical_element020206 networking & telecommunications02 engineering and technology[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ISOLTRAP7. Clean energyISOLTRAPcadmium massesIsotope separationlaw.inventionlawIsotopes of cadmium0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingNeutron21.10.Dr 21.30.Fe 27.60.+j 32.10.BiNucleon
researchProduct

Ion traps in nuclear physics : recent results and achievements

2016

Ion traps offer a way to determine nuclear binding energies through atomic mass measurements with a high accuracy and they are routinely used to provide isotopically or even isomerically pure beams of short-living ions for post-trap decay spectroscopy experiments. In this review, different ion-trapping techniques and progresses in recent nuclear physics experiments employing low-energy ion traps are discussed. The main focus in this review is on the benefit of recent high accuracy mass measurements to solve some key problems in physics related to nuclear structure, nuclear astrophysics as well as neutrinos. Also, several cases of decay spectroscopy experiments utilizing trap-purified ion sa…

Condensed Matter::Quantum GasesioniliikkuvuusspektrometriaAtomic mass measurementstrap-assisted spectroscopyastrofysiikkaNuclear binding energyhiukkasfysiikkaPhysics experimentsAtomic massNuclear astro-physicsPhysics::Atomic PhysicsDecay spectroscopiesydinfysiikkaMass measurementsIon traps
researchProduct

Superconducting Solenoid System with Adjustable Shielding Factor for Precision Measurements of the Properties of the Antiproton

2019

Physical review applied 12(4), 044012 (2019). doi:10.1103/PhysRevApplied.12.044012

MAGNETIC-MOMENTSpeichertechnik - Abteilung BlaumPenning trapNuclear engineeringGeneral Physics and Astronomy02 engineering and technologyPROTON53001 natural sciencesNoise (electronics)Physics AppliedTrap (computing)External magnetic field0103 physical sciencesPENNING TRAP TECHNIQUEFACILITYddc:530Physics::Atomic PhysicsSolenoidsDetectors and Experimental TechniquesNuclear Experiment010306 general physicsSuperconductivityPhysicsScience & TechnologyLarge Hadron ColliderPhysics021001 nanoscience & nanotechnologyMagnetic fieldElectromagnetic coilAntiprotonPhysical SciencesMagnetic momentsElectromagnetic shieldingPhysics::Accelerator PhysicsCharge-to-mass ratiosDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikATOMIC MASSPARTICLE0210 nano-technologyMASS MEASUREMENTSPhysical Review Applied
researchProduct

Precision mass measurements of neutron-rich nuclei between N=50 and 82

2012

Our knowledge of binding energies of neutron-rich nuclei has experienced a major revision during the last five years due to the introduction of Penning-trap based mass measurements. New mass values for nearly 300 nuclides produced in fission with uncertainties of 10 keV or less have become available. The data produced at three Penning trap facilities at Jyvaskyla, CERN-ISOLDE and Argonne cover all isotopic chains from Ni to Pr, except iodine. In this talk some of this data is reviewed and applied using the mass differentials such as two-neutron binding energy and odd-even staggering to probe their sensitivity on changes in nuclear structure and on the strength of the N=82 shell gap and asso…

Neutron-rich nucleiHistoryFissionPenning trapBinding energyNuclear TheoryFOS: Physical sciences01 natural sciences114 Physical sciencesEducationNuclear physics0103 physical sciencesNeutronNuclideNuclear structureHigh energy physicsNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentMass measurementsNuclear ExperimentPhysics010308 nuclear & particles physicsNuclear structureOdd-even staggeringPenning trapComputer Science ApplicationsShell gap Binding energyPairingIsotopes Neutron beams
researchProduct

Development of a low-energy radioactive ion beam facility for the MARA separator

2016

A low-energy radioactive ion beam facility for the production and study of nuclei produced close to the proton drip line is under development at the Accelerator Laboratory of the University of Jyv\"askyl\"a, Finland. The facility will take advantage of the mass selectivity of the recently commissioned MARA vacuum-mode mass separator. The ions selected by MARA will be stopped and thermalised in a small-volume gas cell prior to extraction and further mass separation. The gas cell design allows for resonance laser ionisation/spectroscopy both in-gas-cell and in-gas-jet. The facility will include experimental setups allowing ion counting, mass measurement and decay spectroscopy.

Nuclear and High Energy PhysicsMaterials sciencePhysics - Instrumentation and DetectorsIon beamNuclear engineeringFOS: Physical sciences01 natural sciences7. Clean energylaw.inventionIonLow energylawIonization0103 physical sciencesPhysical and Theoretical ChemistryNuclear Experiment (nucl-ex)010306 general physicsSpectroscopyNuclear ExperimentSeparator (electricity)010308 nuclear & particles physicsInstrumentation and Detectors (physics.ins-det)Condensed Matter PhysicsLaserMass measurementAtomic and Molecular Physics and OpticsPhysics::Accelerator Physics
researchProduct

The FRS Ion Catcher

2013

At the FRS Ion Catcher at GSI, projectile and fission fragments are produced at relativistic energies, separated in-flight, range-focused, slowed down and thermalized in a cryogenic stopping cell. A multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) is used to perform direct mass measurements and to provide an isobarically clean beam for further experiments, such as mass-selected decay spectroscopy. A versatile RF quadrupole transport and diagnostics unit guides the ions from the stopping cell to the MR-TOF-MS, provides differential pumping, ion identification and includes reference ion sources. The FRS Ion Catcher serves as a test facility for the Low-Energy Branch of the Sup…

Nuclear and High Energy PhysicsPhysics::Instrumentation and DetectorsFissionMass spectrometry01 natural sciencesIonHEAVY-IONSNuclear physicsENERGYGSI0103 physical sciencesddc:530NuclideNuclear Experiment010306 general physicsInstrumentationSUPER-FRSDirect mass measurementta114010308 nuclear & particles physicsChemistryProjectileMultiple-reflection time-of-flight mass spectrometerExtraction timeTIMECryogenic gas-filled stopping cellQuadrupoleISOBAR-SEPARATIONFacility for Antiproton and Ion ResearchAtomic physicsProjectile fragmentationBeam (structure)Exotic nucleiSYSTEMNuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms
researchProduct

High-precision electron-capture Q value measurement of 111In for electron-neutrino mass determination

2022

A precise determination of the ground state $^{111}$In ($9/2^+$) electron capture to ground state of $^{111}$Cd ($1/2^+$) $Q$ value has been performed utilizing the double Penning trap mass spectrometer, JYFLTRAP. A value of 857.63(17) keV was obtained, which is nearly a factor of 20 more precise than the value extracted from the Atomic Mass Evaluation 2020 (AME2020). The high-precision electron-capture $Q$ value measurement along with the nuclear energy level data of 866.60(6) keV, 864.8(3) keV, 855.6(10) keV, and 853.94(7) keV for $^{111}$Cd was used to determine whether the four states are energetically allowed for a potential ultra-low $Q$-value $\beta^{}$ decay or electron-capture deca…

Nuclear and High Energy PhysicsmassaspektrometriaNeutrino massUltra-low Q valueAstrophysics::High Energy Astrophysical PhenomenaPenning trapneutriinotFOS: Physical sciencesNuclear Experiment (nucl-ex)ydinfysiikkaNuclear ExperimentMass measurementsElectron capturePhysics Letters B
researchProduct

High-precision mass measurement ofS31with the double Penning trap JYFLTRAP improves the mass value forCl32

2010

Nuclear physicsPhysicsNuclear and High Energy PhysicsInternal conversionDecay schemeIsotopes of germaniumDouble beta decayBeta particleAtomic physicsPenning trapMass measurementBeta-decay stable isobarsPhysical Review C
researchProduct